
Efficient Training with Denoised Neural Weights

Yifan Gong1,2⋆ , Zheng Zhan2 , Yanyu Li1,2 , Yerlan Idelbayev1 , Andrey
Zharkov1 , Kfir Aberman1 , Sergey Tulyakov1 , Yanzhi Wang2 , and Jian

Ren1

1 Snap Inc. 2 Northeastern University
Project Page: https://yifanfanfanfan.github.io/denoised-weights/

Abstract. Good weight initialization serves as an effective measure to
reduce the training cost of a deep neural network (DNN) model. The
choice of how to initialize parameters is challenging and may require
manual tuning, which can be time-consuming and prone to human error.
To overcome such limitations, this work takes a novel step towards build-
ing a weight generator to synthesize the neural weights for initialization.
We use the image-to-image translation task with generative adversar-
ial networks (GANs) as an example due to the ease of collecting model
weights spanning a wide range. Specifically, we first collect a dataset with
various image editing concepts and their corresponding trained weights,
which are later used for the training of the weight generator. To address
the different characteristics among layers and the substantial number
of weights to be predicted, we divide the weights into equal-sized blocks
and assign each block an index. Subsequently, a diffusion model is trained
with such a dataset using both text conditions of the concept and the
block indexes. By initializing the image translation model with the de-
noised weights predicted by our diffusion model, the training requires
only 43.3 seconds. Compared to training from scratch (i.e., Pix2pix),
we achieve a 15× training time acceleration for a new concept while
obtaining even better image generation quality.

1 Introduction

Efficient training for deep neural networks (DNN) not only accelerates the model
development process but also reduces the requirements for computational re-
sources and costs. Many prior works have investigated efficient training strate-
gies, such as sparse training [2, 9, 12, 21, 22, 35, 38, 40, 42] and low-bit train-
ing [34, 37, 41]. However, achieving efficient training is often hindered by chal-
lenges in initializing model weights effectively. While some efforts have been
conducted in the domain of weight initialization [1, 6, 7, 10, 17, 43], determining
the appropriate schemes to use across different tasks remains challenging. Tuning
parameters for weight initialization can be time-consuming and prone to human
error, leading to sub-optimal performance and increased training time.

⋆ Work done during internship at Snap Inc.

https://orcid.org/0000-0002-3912-097X
https://orcid.org/0000-0002-3882-5484
https://orcid.org/0000-0003-1240-4785
https://orcid.org/0000-0002-0179-467X
https://orcid.org/0000-0001-9662-4552
https://orcid.org/0000-0002-4958-601X
https://orcid.org/0000-0003-3465-1592
https://orcid.org/0000-0002-4325-521X
https://orcid.org/0000-0002-0511-7473
https://yifanfanfanfan.github.io/denoised-weights/

2 Y. Gong, Z. Zhan, et al.

To tackle such challenges, inspired by recent advances in designing Hyper-
Networks [11, 30, 39], for the first time, we investigate the feasibility of build-
ing a weight generator to provide better weight initialization across different
tasks, thus reducing the training time and resource consumption for obtaining a
well-trained DNN model. We use image-to-image translation tasks trained with
GAN models [18, 24, 46] as an example to unfold our design for predicting neu-
ral weights, though our framework is a general design that is not restricted to
generating GAN weights. The reason for the choice is the easy acquisition of a
vast volume of different weights trained on different datasets.

More specifically, the weight generator can predict the initialized weight for
unseen new concepts and styles. To reduce the number of weights to be pre-
dicted, we apply Low-Rank Adaptation (LoRA) [16] to the image generation
model, resulting in many fewer model parameters while still maintaining high-
quality image generation. As the GAN model is composed of different types of
layers with different sizes and number of weights, we group the weights and di-
vide them into equal-sized blocks. A diffusion process [28,31–33] is leveraged to
model the space of well-trained weights from GAN models. Hence, the weights
estimation by training diffusion model, namely, the weight generator, becomes
possible. To improve the performance of the weight generator, we further in-
corporate the block index as a further conditioning mechanism in the weight
generator, by adopting a sinusoidal positional encoding scheme and computing
the embeddings for block indexes. The embedding provides the weight gener-
ator with information about the position of each weight block within all the
model weights. After obtaining the weight generator, to train a GAN-based
image translation model, we conduct a fast inference of the weight generator
through a single-step denoising process and use the predicted weights to ini-
tialize the GAN model. The GAN model only requires a subsequent efficient
fine-tuning process to obtain high-quality image generation results, significantly
reducing the time consumption for obtaining the model for the newly unseen
concept. We summarize our contributions as follows:

– We propose a framework to generate weight initializations across different
concepts/styles to efficiently train the GAN models for the image translation.

– We collect a vast ground-truth dataset of LoRA weights for different con-
cepts/styles with the help of diffusion models (i.e., preparing paired image
datasets), which serves as the foundation for weight generator training.

– We introduce an efficient design for a weight generator by utilizing a diffu-
sion process, which incorporates both textual concept information and block
indexes as inputs. To deal with different layer types and weight shapes, we or-
ganize weights into equal-sized one-dimensional blocks, significantly reducing
computational overhead. These block indexes are seamlessly integrated into
the weight generator design by combining them with time step embeddings.
Therefore, the weight generator has the information about the position of
each weight block within all the model weights.

– Our proposed framework can predict the initialized neural weights of a GAN
model with a single denoising step, taking only 1.19 seconds. By initializing

Efficient Training with Denoised Neural Weights 3

with the predicted weights, a fast fine-tuning process can convey the target
style in 42.1 seconds. Compared to training from scratch (i.e., Pix2pix [18]),
we reduce the total training time by 15×, while maintaining even better
image generation quality. Compared to other efficient training method [14],
we can save the training time by 4.6×.

2 Related Work

2.1 Efficient Training

Efficient training of DNNs has been a central point in machine learning re-
search, aiming to reduce computational costs and memory requirements dur-
ing model training while maintaining model performance. Sparse training meth-
ods [2, 9, 12,21,22,35,38,40,42] explore faster DNN training by applying sparse
masks to the model. Static sparse training [22,35,38] executes traditional training
after first pruning the model with a fixed sparse mask, which typically results
in lower accuracy and higher computation and memory consumption for the
pruning stage. On the contrary, dynamic mask methods [2, 9, 12] start with a
sparse model structure from an untrained dense model and then combine sparse
topology exploration with the sparse model training, which adjusts the sparsity
topology during training while maintaining a low memory footprint. Besides ap-
plying sparse masks on weights and gradients, some recent works [21,40,42] also
investigate incorporating data efficiency with different data selection approaches
for better training accelerations. Meanwhile, another direction of the research
explores low-bit training of DNNs to pursue model training efficiency [34,37,41].
However, using lower precision typically leads to an accuracy drop. A good weight
initialization is essential to stabilize training, enable a higher learning rate, accel-
erate convergence, and improve generalization. Existing works explore rescaling
paradigms [1,7,17,43] or leverage the relationship between layers [6,10]. However,
determining schemes to use is still a challenging task and prone to human errors
for different tasks. Meanwhile, LoRA methods [8, 16] aim to exploit the inher-
ent low-rank structure present in DNN weight matrices to reduce computational
complexity and memory requirements for fine-tuning from a pre-trained model
on a specific, smaller dataset to specialize its performance on a particular task or
domain. By keeping the original model unchanged and adds small, changeable
parts to each layer of the model, LoRA methods can significantly reduce the
number of parameters and operations required for forward and backward passes,
which serves as an effective complement in the efficient training direction.

2.2 HyperNetwork

HyperNetworks have emerged as a promising approach in the field of generative
AI by generating model parameters. HyperDreamBooth [30] introduces a Hy-
perNetwork capable of generating personalized weights from a single image. By
leveraging these weights within the diffusion model, HyperDreamBooth enables

4 Y. Gong, Z. Zhan, et al.

the generation of personalized faces with high subject details in diverse styles
and contexts followed by a fast fine-tuning process. HyperDiffusion [11] oper-
ates directly on MLP weight instead of directly applying generative modeling
on implicit neural fields. It first collects a dataset of neural field multilayer per-
ceptrons (MLPs) overfitting on 3D or 4D shapes. The dataset is then used to
train the HyperNetwork, which is an unconditional generative model, to predict
the MLP weights for 3D or 4D shape generation. Neural Network Diffusion [39]
works on generating model weights for image classification tasks. However, the
weight generation is based on first collecting multiple trained model weights for
specific model architecture on the target dataset. Furthermore, it only works on
generating the weights for two normalization layers.

3 Motivations and Challenges

Effective weight initialization is crucial for stabilizing training, facilitating a
faster learning rate, expediting convergence, and enhancing generalization abil-
ity. However, identifying good weight initializations across different tasks re-
mains challenging. Inspired by recent advances in HyperNetwork, we hope to
investigate whether we can build a weight generator to obtain good weight ini-
tialization, thus reducing training time and resource consumption. Unlike the
popular image/video generation, little research effort has been paid to explore
weight generation. Building such a weight generator is promising yet challeng-
ing. The first significant challenge comes from the different layer types within
DNN architectures. The weights in each layer exhibit diverse sizes and shapes,
necessitating a weight generation approach capable of accommodating this het-
erogeneity. Second, the weight generator must possess the capacity to generate
a substantial number of parameters efficiently, ensuring comprehensive cover-
age across the network. Third, the inference of the weight generator should be
fast and efficient to save time in obtaining the weights for a new task. Address-
ing these challenges holds promise for building better DNN training paradigms
with higher efficiency and effectiveness of deep learning systems. Thus, in this
work, we study the construction of the weight generator for better weight ini-
tializations. We aim to show the generation ability not only restricted to the
weight initialization for a single model architecture on a certain dataset, such
as ResNet-18 on CIFAR-10 as in [39], but across the models for different tasks.
To achieve this, we take the generation of initialization weights for GANs for
image-to-image translation tasks as an example to show our methods due to
the ease of collecting diverse datasets for the GAN models. Our method is not
restricted to the GAN architecture or the image-to-image translation task.

4 Method

Our objective is to train a weight generator to predict the weight initializations
for different tasks. We take GANs for image-to-image translation tasks as an
example to demonstrate the effectiveness of our method. When there is a new

Efficient Training with Denoised Neural Weights 5

Neural Diffusion

Weight Init.

Weight Generator

Image Diffusion

Fine-

Tuning

Block Index

Text Info.

Fig. 1: The framework overview of our weight generator design. The standard dif-
fusion process turns an image into noise in the forward pass and reverses a clean image
from pure noise in the reverse process. Our weight generator is designed to turn a noise
to weight initializations for efficient training purposes. Given the text information and
block index, the weight generator provides the corresponding weight values.

concept/style, we can query the weight generator to provide the weight values
for the initialization. The weight generator is modeled with a diffusion process,
as illustrated in Fig. 1. Different from image diffusion models that reverse a clean
image from a purse noise, our framework targets turning the noise into weight
values used for the initialization. By plugging in the predicted weight values,
a fast fine-tuning process is conducted to achieve the efficient training of the
GAN models for the target style. The core of our framework is the design of the
weight generator. To build this weight generator, we elaborate on how to create
the training dataset for the weight generator in Sec. 4.1, the data format for the
training and inference of the weight generator in Sec. 4.2, the architecture and
training objective of the weight generator in Sec. 4.3, and the fine-tuning process
after the weight prediction is Sec. 4.4.

4.1 Dataset Collection

In order to effectively train a weight generator for generating weight initializa-
tions of GAN models across various concepts, we need to collect a large-scale
ground-truth weight value dataset for different concepts. To obtain the ground-
truth weight value dataset, a large-scale prompt dataset becomes crucial. By
using the concepts/styles in the prompt dataset, we can achieve image collection
with diffusion models to obtain a substantial collection of images representative
of each target concept. The images for each concept/style are further leveraged
to train the GANs for the obtaining of the ground-truth GAN weights.

As the foundation of data preparation for weight generator training, the
prompt dataset should include diverse visual concepts/styles to enable the weight
generator to learn comprehensive representations for initializing GANs tailored

6 Y. Gong, Z. Zhan, et al.

to specific tasks. However, the process of collecting such a dataset poses great
challenges. Ensuring diversity and representativeness across different concepts/styles
demands considerable data. Moreover, the collected prompts are further used to
generate images in the target concept/style with diffusion models.

To construct our prompt dataset for training a reliable weight generator for
GAN weight initialization, we adopt a systematic approach that integrates both
large language models (LLMs) for style generation and augmentation to en-
sure richness and diversity in conceptual representation. We begin by sketching
out three broad categories: 1) art concepts, 2) characteristic concepts, and 3)
facial modification concepts. Within each category, we leverage a large language
model (ChatGPT-3.5 [4]) to ask it to generate a spectrum of textual descriptions
encompassing various concepts. By filtering out redundant concepts/styles, we
further conduct an augmentation method by querying a large language model
(Vicuna [5]) to provide concepts/styles with similar meanings but different rep-
resentations. To further enrich the prompt dataset, we permute and combine
concepts/styles across different categories. Through the process, we are able to
curate a large-scale prompt dataset that not only spans diverse conceptual do-
mains but also captures intricate stylistic differences, providing the foundation
for the training of the weight generator for better weight initialization.

After the prompt dataset collection, we use the diffusion models to edit real
images to obtain the edited images for each concept/style in the prompt dataset,
forming pairs of data for GAN training. Here, we adopt a generator with a hybrid
of ResNet blocks and transformer blocks as in paper [14] due to the effectiveness
of the model and the hybrid architecture design to show the generation ability of
our method on different types of layers. Following the GAN training process, we
build a dataset of weights from GAN checkpoints for different concepts/styles.
To further augment the weight value dataset, we save K checkpoints through
the training process for each concept/style after the FID performance converges.

4.2 Data Format Design for Weight Generator

To train a weight generator capable of efficiently producing weight initializations
for GAN models across diverse concepts, it is important to design the weight
format for both training and inference. The objective is whenever a new concept
is provided as the input to the weight generator, it can generate the weight ini-
tialization of all layers for the concept. Given there exist multiple different types
of layers within the model such as fully connected (FC), convolutional (CONV),
and batch normalization (BN) layers, and the varying sizes and dimensions across
the layers, designing the appropriate data format becomes crucial and challeng-
ing. Furthermore, the scale of weights in a GAN model is typically on the scale
of millions, posing more challenges to the data format design.

A larger amount of weights to be predicted leads to more difficulties for the
weight generator. To alleviate this, we apply Low-Rank Adaptation (LoRA) [16]
to different layers to greatly reduce the number of weights to be predicted. For
instance, for a CONV layer i with weights wi ∈ Rc×f×kh×kw , we apply two
low-rank matrices with rank ri, i.e. wA

i ∈ Rc×ri×kh×kw as LoRA down layer,

Efficient Training with Denoised Neural Weights 7

and wB
i ∈ Rri×f×1×1 as LoRA up layer, to approximate the weight change. By

doing so, the total amount of weights to be predicted is reduced from 7.06M to
0.22M. We show that finetuning LoRA weights are sufficient to transfer the gen-
erative domain of the GAN model. Though greatly reducing the weight number,
directly predicting all 0.22M weights simultaneously through inference of the
weight generator once is still challenging. It requires a large weight generator
with huge computation and memory burdens.

To tackle this, we partition the weights into groups to mitigate the computa-
tional complexity and enhance the feasibility of fitting the weight generator into
memory during both training and inference. As different layers have different sta-
tistical characteristics, we group the LoRA down and up layers for each layer i,
with the associated BN layers if applicable, into one group. Still, each group has
a different number of weights and shapes. Thus, we further flatten the weights
into 1-dimensional vectors and divide the weights into N equal-sized blocks,
each with b weights. Thus, the data format is denoted as < n,wn, T >, where
n is the block index, wn ∈ Rb is the flattened 1-dimensional weight vector for
the n-th weight block, and T denotes the text prompt of current concept/style.
The advantages of using such a data format include: 1) works for different types
and shapes of layers; 2) reduces the computation complexity and difficulty for
prediction; and 3) makes the weight generator easier to fit into memory.

4.3 Weight Generator Training

+

ResBlock Transformer emb_n emb_t prompt_emb

1-d weight

vector block

Fig. 2: The UNet Weight Generator. The
weight generator is composed of 1-d ResBlocks and
1-d Transformer blocks. The block embedding embn
is combined with the time step embedding emdt to
be leveraged in each ResBlock.

Using our dataset of weight
values, we train a genera-
tive model that learns to pro-
vide the weight initializations
for other concepts/styles. We
model the weight initializa-
tion space of GANs through a
diffusion process. The genera-
tor is a UNet weight informa-
tion creator ϵ̂θ parameterized
by θ for 1-dimensional vec-
tors, which is demonstrated in
Fig. 2. We diffuse the weight
block wn from a real weight
distribution p(wn) into a
noisy version and train the de-
noising UNet to gradually reverse this process, generating weights from Gaussian
noise. The training can be formulated as the following noise prediction problem:

min
θ

E[∥ϵ̂θ(wt
n, t, n, τ(T))− ϵ∥22], (1)

where t refers to the time step; ϵ is the ground-truth noise; wt
n = αtwn + σtϵ

is the noisy weight for block n; αt and σt are the strengths of signal and noise,

8 Y. Gong, Z. Zhan, et al.

respectively, decided by a noise scheduler; τ is a frozen text encoder such as
CLIP [27]. To incorporate the block index as a further conditioning mechanism
in our weight generator, we adopt a strategy inspired by the sinusoidal positional
encoding commonly used in sequence-to-sequence models [36]. We compute a
sinusoidal block index encoding, which serves to provide the weight generator
with information about the position of each weight block within all the model
weights. Specifically, let N denote the total number of weight blocks and d
denote the dimensionality of the encoding. The sinusoidal block index encoding
SinEnc(n, d) for block index n is computed as follows:

SinEnc(n, 2i) = sin
(n

100002i/d

)
, SinEnc(n, 2i+ 1) = cos

(n

100002i/d

)
, (2)

where i ranges from 0 to
⌊
d−1
2

⌋
. The sinusoidal encoding is then fed into em-

bedding layers to obtain the block index embedding emb_n. Finally, the block
index embedding emb_n is combined with the time step embedding emd_t,
represented as emb = emb_n+ emb_t, to be leveraged in each residual block in
the generator. Thus, the weight generator has access to the block index through-
out the denoising process. From the results, we observe that the block index n
can model the weights from different blocks effectively without the necessity to
condition on prior predicted weights, while greatly reducing the computations.

4.4 Fast Fine-Tuning with Generated Weight Initializations

When a new concept/style T arises, the weight initializations can be obtained
by conducting inference for the trained weight generator ϵ̂θ for each weight block
n. To achieve fast acquisition of weight initializations, we employ a direct recon-
struction method to avoid the iterative denoising process. More specifically, at
the selected time step t that leans to the noise side, we forward the denoising
diffusion model to predict the noise ϵ̂θ(w

t
n, t, n, τ(T)), and we conduct a direct

recovery to obtain the real weight wn = w0
n:

w0
n =

1

αt
wt

n − σtϵ̂θ(w
t
n, t, n, τ(T)). (3)

After conducting inference for all of the N weight blocks, we can obtain the
weight initialization {wn}Nn=1 for the concept/style T . To capture the details of
the new concept/style better, a further fine-tuning process for the GAN weights
is leveraged with the conditional GAN loss as follows

min
wlora

max
wd

λEx,x̃T ,z,T

[
∥x̃T − G(x, z, T ;wg,wlora)∥1

]︸ ︷︷ ︸
ℓ1 loss

+

Ex,x̃T

[
logD(x, x̃T ;wd)

]
+ Ex,z,T [log(1−D(x,G(x, z, T ;wg);wd))]︸ ︷︷ ︸
conditional GAN loss

,
(4)

where x̃T denotes images generated by the diffusion model conditioned on the
concept T of the target style, G is the generator with original weights wg and

Efficient Training with Denoised Neural Weights 9

the LoRA weights wlora, D denotes the discriminator function parameterized by
wd, respectively, z is a random noise introduced to increase the stochasticity of
output, and λ can be used to adjust the relative importance between two loss
terms. During the fine-tuning process, the generator only optimizes the LoRA
weights wlora which are initialized with the predictions {wn}Nn=1. By initializing
the GAN weights from predictions, we are able to use much fewer training epochs
to reach the same or even better FID performance. Besides fine-tuning after
prediction, we also consider incorporating the GAN training loss in Eq. (4) to
the weight prediction loss in Eq. (1). However, through experiments, we find out
that combining these two loss terms is not able to provide better performance,
but leads to more computation costs for training the weight generator.

5 Experiments

In this section, we provide the detailed experimental settings, results of our
proposed method compared to baseline methods, and the ablation studies. More
details as well as some ablation studies can be found in the Appendix.

5.1 Experiment Settings

Baselines. We compare our method with image-to-image translation methods
like pix2pix [18] (image generator with 9 ResNet blocks), pix2pix-zero-distilled
that distills Co-Mod-GAN [45] from pix2pix-zero [25], and efficient GAN training
methods E2GAN [14].

Prompt Dataset Preparation. We first use ChatGPT-3.5 [4] to collect prompts
for the three categories: 1) art, 2) characteristic, and 3) facial modification
concepts as discussed in Sec. 4.1. After filtering out repeated and unmeaning
prompts, we get 226 art concepts, 441 character concepts, and 26 facial mod-
ification concepts. We reserve 20 art concepts, 20 character concepts, and 5
facial modification concepts for test use, never used during the weight generator
training. By combining the concepts across different categories that are not re-
served as test concepts and filtering, the prompt dataset is enriched with another
84477 concepts. We further augment the obtained concepts with Vicuna [5] for
concepts with the same meaning but different expressions and filter meaningless
ones, which leads to an additional 4126 augmented art concepts, 8070 augmented
characteristic concepts, and 245 augmented facial modification concepts.

Paired Image Preparation. After the prompt dataset is collected, we gener-
ate images for GAN training for each concept. We verify our method on 1, 000
images from the FFHQ dataset [19] with image resolution as 256 × 256. The
images in the target domain are generated with several different text-to-image
diffusion models, including Stable Diffusion [29], Instruct-Pix2Pix [3], Null-Text

10 Y. Gong, Z. Zhan, et al.

White
walker Old person

Silver
Sculpture

Vincent van
Gogh style

Albino

 person

Origin

Angry

 person

Oldtime
photo

Blond

person

Oldtime

photo

White

walker

Vincent van
Gogh style

Henri Matisse

paintings

Blond

person

Graphic Novel
Art

Jacob
Lawrence

paintings

Hulk

Target

Origin

D
iffusion M

od
el

P
ix2

P
ix

P
ix2

P
ix-Z

ero
E2

G
A

N
O

urs
D

iffusion M
od

el
P

ix2
P

ix
P

ix2
P

ix-Z
ero

E2
G

A
N

O
urs

Fig. 3: Qualitative comparisons across different concept domains. The leftmost
column shows two original images and the remaining columns present the corresponding
synthesized images in the target concept domain, where target prompts are shown at
the top/bottom row. We provide images generated by various models.

Inversion [23], ControlNet [44], and InstructDiffusion [13]. The generated im-
ages with the best perceptual quality among diffusion models are selected to
form the real images into paired datasets. To perform training and evaluation
of GAN models, we divide the image pairs from each target concept into train-
ing/validation/test subsets with the ratio as 80%/10%/10%.

Ground-truth GAN Weights Preparation. With the paired images, we
collect the ground-truth GAN weights to train the weight generator. We apply
LoRA to each layer of the generator, leading to 0.2256M weights for each concept
to learn. We follow the standard approach that alternatively updates the gener-
ator and discriminator [15]. The training is conducted from an initial learning
rate of 2e-4 with mini-batch SGD using Adam solver [20]. The total training

Efficient Training with Denoised Neural Weights 11

epochs are set to 100. The obtained weights are grouped following Sec. 4.2 and
divided with a block size of 256, resulting in a total of 854 weight blocks. When
dividing the weights into equal-sized blocks, zeros are padded when necessary.

Training Settings. The weight generator is trained with AdamW optimizer
[20]. The initial learning rate is set as 1e-5, the weight decay is set as 0.01, and the
training batch size is set as 512. The weight generator training is conducted with
4 or 8 nodes, each with 8 NVIDIA A100 GPUs with 40GB or 80GB memory. The
block size for weight division is set as 256. For the following fine-tuning process,
to show a fair comparison with the efficient GAN training approach E2GAN, we
adopt the same cluster size as 400 for each concept. The initial learning rate is
set as 0.0015 and the fine-tuning epochs are set as 20.

Evaluation Metric. We compare the performance of our efficient weight gen-
eralization by comparing images generated by models obtained via our approach
and baseline methods. The evaluation is achieved by calculating Clean FID pro-
posed by [26] on the test sets of the paired images.

5.2 Experimental Results

Qualitative Results. The synthesized images in the target domain obtained
by our method and other methods are shown in Fig. 3. The original images are
listed in the leftmost column, and the synthesized images for the target concept
obtained by diffusion models, pix2pix, pix2pix-zero-distilled, E2GAN, and ours
are shown from top to bottom. The tasks span a wide range, such as changing the
age, artistic styles, and characteristic styles. According to the results, the models
obtained by ours can modify the original images to the target concept domain
by fast fine-tuning with the weight initializations from the weight generator. For
instance, for the Jacob Lawrence paintings prompt on the FFHQ dataset, our
model generates more meaningful images compared to all baseline methods. As
for the albino person prompt, our method edits the image as desired while
having fewer artifacts. We provide more qualitative results in the Appendix.

Table 1: FID and time consumption compari-
son. FID is calculated between the images generated
by GAN-based approaches and diffusion models. Re-
ported FID is averaged across different concepts in the
test prompt dataset.
Method FID Time Consumption
Pix2pix-zero-distilled 144.81 112 min
Pix2pix 99.20 659.8 secs
E2GAN 93.86 198.5 secs
Ours 89.93 43.3 secs

Quantitative Results. We
compare the quantitive re-
sults and training time con-
sumption between our method
and other baseline methods,
and the results are provided
in Tab. 1. Note that for
each concept, pix2pix-zero-
distilled and pix2pix are
trained on the whole train-
ing dataset of 800 samples

12 Y. Gong, Z. Zhan, et al.

(a) Blond person

(e) Vincent van Gogh Style (f) Watercolor painting (g) White walker (h) Zombie

(b) Graphic novel art (c) Green lantern (d) Silver sculpture

Fig. 4: The FID performance comparison between our method and baseline methods
along with the training process on the test dataset for different concepts/styles.

with 200 epochs. E2GAN begins with a base model and is fine-tuned with 400
samples for 100 epochs. Our method initializes the GAN weights with the predic-
tion from the weight generator and is fine-tuned with 400 samples for 20 epochs.
The reported FID values are computed with an average for all the concepts in the
test prompt dataset. The time consumption is measured on one NVIDIA H100
GPU. The results demonstrate that our method can reach an even better FID
performance than the conventional GAN training techniques like pix2pix and
pix2pix-zero-distilled, and efficient GAN training methods such as E2GAN, in-
dicating the high-fidelity of generated images. Furthermore, our method greatly
reduces the time consumption for obtaining the model for a new concept/style.
The time consumption of our method is mainly composed of two parts: 1) the
inference of the weight generator to get the predicted weight initialization values
for each block; and 2) the fine-tuning process with the initialized weight values.
By using a batch size of 64, the prediction process of the weight generator
only takes 1.19 secs. Taking advantage of the effective weight initializations,
the fine-tuning process only requires 20 epochs to reach good performance, which
takes 42.1 secs and results in 43.3 secs of training time in total. Specifically, our
method reduces the training time by 152×, 15×, and 4.6× compared to Pix2pix-
zero-distilled, Pix2pix, and E2GAN, respectively. Furthermore, the results also
indicate the effectiveness of only updating LoRA weights to transfer the gener-
ative domain of the GAN model as both our method and E2GAN only update
LoRA weights, but achieve good FID performance.

FID Curves. We show the FID curves along with the training process by
different methods in Fig. 4. More FID curve results can be found in the Appendix.
From the results, we can observe that our method achieves a faster convergence
across different concepts/styles. The effectiveness of our weight generator for
generating weight initializations is revealed in two aspects. First, our method
provides a better starting point for the training, indicated by the better FID
score before training (epoch 0). Second, training from the initialization can reach

Efficient Training with Denoised Neural Weights 13

a better FID score with much fewer training epochs. For instance, for the concept
white walker, our weight generator provides a weight initialization with an FID
of 95.46, while the baseline methods have an initial FID of 154.29, 150.32, and
112.50, respectively. After fine-tuning with 20 epochs, our method reaches an
FID of 41.38, which improves the baseline methods by at least 2.1.

Ablation Studies. We conduct ablation studies on the block size and weight
grouping rules. Due to the huge training cost of the weight generator on the en-
tire training dataset, we conduct small-scale experiments for the ablation study.
We overfit the weight generator solely on the weights corresponding to a particu-
lar concept of interest. The approach provides a precise assessment of how well a
particular configuration captures a specific concept. Any discrepancies between
the overfitted results and the ground-truth values can be attributed directly to
the efficacy of the chosen configuration.

Table 2: Ablation study on block size for weight
division in data preparation. The first row represents
the performance of the ground-truth trained model
while the remaining rows correspond to the perfor-
mance of generated weights from the weight generator
with different weight block sizes.

Block Size Weight Gene. Time FID
Grey hair Batik

- - 89.04 90.43
128 1.71 secs 107.67 128.44
256 1.19 secs 98.35 94.36
512 1.04 secs 130.85 118.31

For the block size study,
we investigate different block
size settings including 128,
256, and 512, on two ran-
domly selected concepts
grey hair and Batik. The
block size selection is based
on the size of all layers in
the GAN model. The re-
sults are shown in Tab. 2.
The results show that the
block size selection has an
impact on the weight gen-
eration performance. Setting a larger block size leads to a faster weight genera-
tion process. However, the FID performance is the best when the block size is set
as 256, while the generation time is slightly slower than a block size of 512. The
results indicate that the appropriate selection of the block size to divide grouped
weights is important for achieving good performance of the weight generator.

Table 3: Ablation study on
weight grouping.
Group Rule Grey hair Batik

Rule 1) 98.35 94.36
Rule 2) 98.40 95.17
Rule 3) 122.71 126.50

For the weight grouping before weight di-
vision, we study 3 different rules including 1)
group the LoRA down layer, LoRA up layer,
and the following BN layer if applicable for
each layer i to one group, and append the re-
shaped 1-dimensional weight vectors one by
one; 2) group the LoRA down layer, LoRA
up layer, and the following BN layer if appli-
cable for each layer i to one group, concatenate the weights through the channel
dimension and reshape it to 1-dimensional vector; 3) view each layer as a single
group and reshape to 1-dimensional vector. Besides the weight grouping rules,
all the other settings are the same as the default setting for the main results.
We show the comparisons of the 3 rules in Tab. 3. From the results, we can see

14 Y. Gong, Z. Zhan, et al.

that Rule 1) and Rule 2) both perform much better than Rule 3), which indi-
cates the importance of grouping the layers belonging to the same layer i into
one group. The rationale behind this might be related to the different statistics
among different layers. Furthermore, Rule 1) and Rule 2) do not have obvious
performance differences, which means after grouping weights for the same layer
i together, it is not necessary to take different channels separately. Combining
the ablation studies, we get the default setting used in the main results, which
correspond to use rule 1) to group weights and set the block size as 256.

6 Conclusion

This paper studies to generate good weight initializations with a weight generator
to reduce the training cost of a DNN. Leveraging the image-to-image translation
task with GANs as a case study, we demonstrate the feasibility and effectiveness
of our approach. Through the division of weights into equal-sized blocks and
the incorporation of block indexes, we mitigate the complexity of varied layer
characteristics and a large number of weights. By training a diffusion process
with both textual concept conditions and block indexes, the weight generator
produces weight initializations for new concepts/styles efficiently with a one-
step direct recovery. We conduct extensive experiments on different concepts
to demonstrate the effectiveness of our proposed framework. By leveraging the
synthesized weight initializations, we can achieve better FID performance with
much fewer training costs across various concepts/styles than baseline methods
including conventional GAN training and efficient GAN training approaches.
We reduce the time consumption for obtaining the model for a new concept by
4.6× while improving the FID performance by 3.93 than efficient GAN training
baseline and reduce the total training time by 15× than training from scratch
(i.e., Pix2pix [18]) with better FID performance.

7 Discussion of limitations

The development of a weight generator to synthesize improved weight initial-
izations can increase the efficiency and efficacy of model training. To prepare
the training data for the weight generator, we leverage diffusion models to edit
real images, thereby obtaining edited images that encompass a wide range of
concepts. This approach allows us to create paired data spanning various con-
cepts/styles, which provide the foundation for training diverse GAN weights
for different generation domains. However, the quality of the generated images
plays a pivotal role in influencing the performance of the trained GAN model,
consequently impacting the performance of the weight generator. While diffu-
sion models offer a powerful tool for image editing, the quality and fidelity of
the generated images may not always meet the desired standards. Furthermore,
utilizing diffusion models for data collection remains expensive. Developing ef-
ficient techniques to rapidly construct well-paired and high-quality images from
diffusion models would greatly enhance the training of the weight generator.

Efficient Training with Denoised Neural Weights 15

References

1. Bachlechner, T., Majumder, B.P., Mao, H., Cottrell, G., McAuley, J.: Rezero is all
you need: Fast convergence at large depth. In: Uncertainty in Artificial Intelligence.
pp. 1352–1361. PMLR (2021) 1, 3

2. Bellec, G., Kappel, D., Maass, W., Legenstein, R.: Deep rewiring: Training very
sparse deep networks. arXiv preprint arXiv:1711.05136 (2017) 1, 3

3. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. arXiv preprint arXiv:2211.09800 (2022) 9

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)
6, 9

5. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang,
S., Zhuang, Y., Gonzalez, J.E., et al.: Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023) (2023) 6, 9

6. Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention
and convolutional layers. arXiv preprint arXiv:1911.03584 (2019) 1, 3

7. De, S., Smith, S.: Batch normalization biases residual blocks towards the identity
function in deep networks. Advances in Neural Information Processing Systems
33, 19964–19975 (2020) 1, 3

8. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: Efficient fine-
tuning of quantized llms. Advances in Neural Information Processing Systems 36
(2024) 3

9. Dettmers, T., Zettlemoyer, L.: Sparse networks from scratch: Faster training with-
out losing performance. arXiv preprint arXiv:1907.04840 (2019) 1, 3

10. d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: Con-
vit: Improving vision transformers with soft convolutional inductive biases. In:
International Conference on Machine Learning. pp. 2286–2296. PMLR (2021) 1, 3

11. Erkoç, Z., Ma, F., Shan, Q., Nießner, M., Dai, A.: Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. arXiv preprint arXiv:2303.17015
(2023) 2, 4

12. Evci, U., Gale, T., Menick, J., Castro, P.S., Elsen, E.: Rigging the lottery: Making
all tickets winners. In: International Conference on Machine Learning. pp. 2943–
2952. PMLR (2020) 1, 3

13. Geng, Z., Yang, B., Hang, T., Li, C., Gu, S., Zhang, T., Bao, J., Zhang, Z., Hu, H.,
Chen, D., et al.: Instructdiffusion: A generalist modeling interface for vision tasks.
arXiv preprint arXiv:2309.03895 (2023) 10

14. Gong, Y., Zhan, Z., Jin, Q., Li, Y., Idelbayev, Y., Liu, X., Zharkov, A., Aberman,
K., Tulyakov, S., Wang, Y., et al.: E2gan: Efficient training of efficient gans for
image-to-image translation. arXiv preprint arXiv:2401.06127 (2024) 3, 6, 9

15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020) 10

16. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,
Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021) 2, 3, 6

17. Huang, X.S., Perez, F., Ba, J., Volkovs, M.: Improving transformer optimization
through better initialization. In: International Conference on Machine Learning.
pp. 4475–4483. PMLR (2020) 1, 3

16 Y. Gong, Z. Zhan, et al.

18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017) 2, 3, 9, 14

19. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 4401–4410 (2019) 9

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 10, 11

21. Kong, Z., Ma, H., Yuan, G., Sun, M., Xie, Y., Dong, P., Meng, X., Shen, X., Tang,
H., Qin, M., et al.: Peeling the onion: Hierarchical reduction of data redundancy
for efficient vision transformer training. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 37, pp. 8360–8368 (2023) 1, 3

22. Lee, N., Ajanthan, T., Torr, P.H.: Snip: Single-shot network pruning based on
connection sensitivity. arXiv preprint arXiv:1810.02340 (2018) 1, 3

23. Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text in-
version for editing real images using guided diffusion models. arXiv preprint
arXiv:2211.09794 (2022) 10

24. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired
image-to-image translation. In: Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. pp. 319–345.
Springer (2020) 2

25. Parmar, G., Kumar Singh, K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot
image-to-image translation. In: ACM SIGGRAPH 2023 Conference Proceedings.
pp. 1–11 (2023) 9

26. Parmar, G., Zhang, R., Zhu, J.Y.: On aliased resizing and surprising subtleties in
gan evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 11410–11420 (2022) 11

27. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021) 8

28. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)
2

29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)
9

30. Ruiz, N., Li, Y., Jampani, V., Wei, W., Hou, T., Pritch, Y., Wadhwa, N., Rubin-
stein, M., Aberman, K.: Hyperdreambooth: Hypernetworks for fast personalization
of text-to-image models. arXiv preprint arXiv:2307.06949 (2023) 2, 3

31. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: International conference
on machine learning. pp. 2256–2265. PMLR (2015) 2

32. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems 32 (2019) 2

33. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456 (2020) 2

Efficient Training with Denoised Neural Weights 17

34. Sun, X., Wang, N., Chen, C.Y., Ni, J., Agrawal, A., Cui, X., Venkataramani, S.,
El Maghraoui, K., Srinivasan, V.V., Gopalakrishnan, K.: Ultra-low precision 4-
bit training of deep neural networks. Advances in Neural Information Processing
Systems 33, 1796–1807 (2020) 1, 3

35. Tanaka, H., Kunin, D., Yamins, D.L., Ganguli, S.: Pruning neural networks without
any data by iteratively conserving synaptic flow. Advances in neural information
processing systems 33, 6377–6389 (2020) 1, 3

36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017) 8

37. Venkataramani, S., Srinivasan, V., Wang, W., Sen, S., Zhang, J., Agrawal, A.,
Kar, M., Jain, S., Mannari, A., Tran, H., et al.: Rapid: Ai accelerator for ultra-low
precision training and inference. In: 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). pp. 153–166. IEEE (2021) 1, 3

38. Wang, C., Zhang, G., Grosse, R.: Picking winning tickets before training by pre-
serving gradient flow. arXiv preprint arXiv:2002.07376 (2020) 1, 3

39. Wang, K., Xu, Z., Zhou, Y., Zang, Z., Darrell, T., Liu, Z., You, Y.: Neural network
diffusion (2024) 2, 4

40. Wang, Z., Zhan, Z., Gong, Y., Yuan, G., Niu, W., Jian, T., Ren, B., Ioannidis,
S., Wang, Y., Dy, J.: Sparcl: Sparse continual learning on the edge. Advances in
Neural Information Processing Systems 35, 20366–20380 (2022) 1, 3

41. Wortsman, M., Dettmers, T., Zettlemoyer, L., Morcos, A., Farhadi, A., Schmidt, L.:
Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems 36 (2024) 1, 3

42. Yuan, G., Ma, X., Niu, W., Li, Z., Kong, Z., Liu, N., Gong, Y., Zhan, Z., He, C., Jin,
Q., et al.: Mest: Accurate and fast memory-economic sparse training framework
on the edge. Advances in Neural Information Processing Systems 34, 20838–20850
(2021) 1, 3

43. Zhang, H., Dauphin, Y.N., Ma, T.: Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321 (2019) 1, 3

44. Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion
models (2023) 10

45. Zhao, S., Cui, J., Sheng, Y., Dong, Y., Liang, X., Chang, E.I., Xu, Y.: Large scale
image completion via co-modulated generative adversarial networks. arXiv preprint
arXiv:2103.10428 (2021) 9

46. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2223–2232 (2017) 2

	Efficient Training with Denoised Neural Weights

